48-volt and automotive electrification – systems, performance and opportunity

2nd edition

By Alistair Hill
About the author

Alistair Hill

Alistair Hill started his career in production and project management having graduated as a metallurgist from the University of Aston in Birmingham. He then moved into industrial market analysis and senior marketing roles within the truck industry supply sector. He became a consultant for Knibb Gormezano & Partners in the mid-1990s and began a long history of automotive and commercial vehicle sector analysis working for a wide range of clients including OEMs, suppliers and analytical companies. He has spoken on a wide range of technical subjects at conferences around the world and is actively involved in science and technology development in his adopted country of New Zealand. Alistair gained an MBA from Huddersfield University in 1994 whilst working senior management at the world’s leading friction materials manufacturer and is now reading for a PhD at Otago University.

About the editor

Soren Sarstrup, Managing Editor

Soren Sarstrup has spent most of his career working in the automotive intelligence industry.

As founder and Managing Editor of Autelligence Ltd., he contributes extensive editorial and publishing experience, a global network of contacts on both the OEM and supplier side, in-depth understanding of the industry and the markets it operates in, hands-on sales and marketing experience, and, last but not least, a long-standing passion for all things automotive.
Table of contents

Chapter 1: Introduction .. 5
1.1 48 volts as a key enabling technology 9

Chapter 2: Autelligence 48-volt survey ... 12

Chapter 3: Development drivers .. 15
3.1 Emissions regulations ... 15
3.1.1 Fuel economy and CO$_2$ emissions .. 16
3.1.2 The European Union ... 16
3.1.3 The United States ... 21
3.1.4 Japan ... 22
3.1.5 China ... 22
3.1.6 Other countries ... 23
3.2 Production and safety issues .. 23

Chapter 4: Development inhibitors .. 26

Chapter 5: Degrees of hybridization ... 34
5.1 Powertrain enhancement ... 37
5.1.1 Stop-start technologies ... 38
5.1.2 Automated manual transmissions (AMTs) 43
5.1.3 Electrical architecture ... 47
5.1.4 Freewheel .. 47
5.1.5 Engine downsizing and down-speeding 47
5.1.6 Changes in combustion cycles .. 50
5.1.7 Supercharger electrification ... 52
5.2 Energy recuperation ... 56
5.3 Auxiliary electrification .. 61
5.3.1 Chassis and suspension ... 62

Chapter 6: 48 volts and E/E architecture .. 68
6.1 Efficient handling of multiple voltage architectures 70
6.2 Energy storage .. 73
6.3 Super-capacitors and ultra-capacitors 78
6.3.1 Wiring loom cost implications .. 81

Chapter 7: Summarizing 48-volt systems development 83
7.1.1 Powertrain improvement through 48-volt 84
7.1.2 Chassis and auxiliary systems improvements through 48-volt ... 85
7.1.3 Energy recuperation systems ... 85

Chapter 8: Implications business models and structures 87

Appendix: Description of different hybrid systems 91
Input power-split ... 91
Two-motor systems ... 91
Parallel hybrid with two clutches (P2) .. 92
Belt Alternator-Starter (BAS) .. 92
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild hybrids</td>
<td>92</td>
</tr>
<tr>
<td>Micro-hybrids</td>
<td>93</td>
</tr>
<tr>
<td>Stop-start</td>
<td>93</td>
</tr>
</tbody>
</table>
Table of figures
Figure 1: CO\textsubscript{2} reduction versus systems cost ... 5
Figure 2: Historical ad projected hybrid system direct manufacturing cost 6
Figure 3: Electrical power requirements versus time ... 7
Figure 4: Hybridization of propulsion – main efficiency strategies 7
Figure 5: Estimated energy losses for conventional vehicles .. 8
Figure 6: Light vehicle volumes featuring 48-volt systems ... 8
Figure 7: Light vehicle volumes equipped with 48-volt mild hybrid systems 2020 and 2025 9
Figure 8: Global mild hybrid volumes by region ... 10
Figure 9: European mild hybrid production – 98% 48-volts. ... 11
Figure 10: Autelligence survey respondent diversity .. 12
Figure 11: Autelligence survey. 48-volt becoming mainstream 12
Figure 12: Autelligence survey. 48-volt only architecture .. 13
Figure 13: Autelligence survey. Factors driving 48-volt growth 13
Figure 14: Autelligence survey. Technologies for which 48-volt is most critical 13
Figure 15: Autelligence survey. Inhibitors to uptake .. 14
Figure 16: Autelligence survey. Winners and losers ... 14
Figure 17: Comparison of global CO\textsubscript{2} regulations for passenger cars, in terms of NEDC gCO\textsubscript{2}/km ... 16
Figure 18: CO\textsubscript{2} (g/km) performance and standards in EU new cars 1994–2011 17
Figure 19: 2012 performance of key EU passenger car OEMs corresponding to 2015 and 2020 targets ... 18
Figure 20: CO\textsubscript{2} (g/km) of selected commercially available passenger cars in the EU in 2013 ... 19
Figure 21: Historical development and future targets for CO\textsubscript{2} emission levels of new passenger cars and light-commercial vehicles in the EU ... 19
Figure 22: Average 2013 fuel consumption ... 20
Figure 23: US targets for future GHG reductions (% reduction from 2005 levels) 21
Figure 24: Global mandatory automobile efficiency and GHG standards 22
Figure 25: Global passenger car and light vehicle emission legislation progress 2005–2025 23
Figure 26: Voltage levels of 48-volt system according to LV 148 24
Figure 27: Failure modes in the 14V/48-volt E/E System ... 25
Figure 28: The effect of alternative German proposals for CO\textsubscript{2} reduction regulation in Europe ... 27
Figure 29: Additional costs entailed by tougher European CO\textsubscript{2} legislation for a vehicle with emissions of 161g/km ... 28
Figure 30: Full hybrid market share EU countries 2012 .. 29
Figure 31: The interaction between battery and fuel costs determines the market for vehicle electrification ... 30
Figure 32: Estimated capacity growth versus market demand for lithium-ion batteries 2010–2020 ... 31
Figure 33: Evolution of higher voltage architecture and functionality 31
Figure 34: Penetration of stop-start systems 2011–2017 ... 33
Figure 35: Types of hybrid ... 34
Figure 36: A schematic showing some of the early benefits achievable using 48-volt architecture ... 34
Figure 37: Power classification and voltage range .. 35
Figure 38: Schematic of the ADEPT project ... 36
Figure 39: Developments in light duty gasoline powertrain to 2025 37
Figure 40: Schematics of different stop-start systems ... 38
Figure 41: Comparison between different stop-start systems .. 39
Figure 42: The advantages of 48-volt over 12-volt operation for CPT’s SpeedStart BSG 40
Figure 43: Additional functionality with ISG versus BSG ... 41
Figure 44: AVL’s e-Fusion modular mild hybrid system ... 42
Figure 45: Global AMT sales forecast 2013–2020 ... 43
Figure 46: Oerlikon Graziano’s innovative 7-speed AMT ... 44
Figure 47: FEV’s 7H-AMT ... 45
Figure 48: Features included in 48-volt transmission technology compared with stop-start and 48 volt engines ... 46
Figure 49: Powertrain measures to reduce CO\textsubscript{2} emissions 48

Table of contents
Figure 50: Regional turbocharger penetration 2009–2020 ... 49
Figure 51: Low-end torque versus mid-high speed brake specific fuel consumption for gasoline engines from MY2005 to MY2012 ... 50
Figure 52: Atkinson versus Otto cycle operation ... 51
Figure 53: Electric supercharger (eSC) ... 53
Figure 54: Aeristech’s 48-volt electric supercharger ... 54
Figure 55: Results from MAHLE tests Aeristech’s 48-volt electric supercharger ... 55
Figure 56: By-wire brake system layout with regeneration ... 56
Figure 57: TRW’s second generation slip control brake boost technology ... 58
Figure 58: Continental’s ESC Hybrid regenerative braking system layout ... 59
Figure 59: Mazda’s supercapacitor based regenerative braking system layout ... 60
Figure 60: Comfortable regeneration requires uncoupling the pedal and quiet and highly dynamic braking force regulation ... 60
Figure 61: Bosch’s iBooster unit ... 61
Figure 62: Electrical power requirements for NEDC and actual customer requirements for various vehicle classes ... 62
Figure 63: Additional functionality requires higher voltages – 48 volts ... 63
Figure 64: EPAS systems suitability for vehicle segments ... 64
Figure 65: The growth of integrated functions ... 65
Figure 66: X-by-wire roadmap ... 65
Figure 67: An active stabiliser bar system ... 66
Figure 68: BMW’s Dynamic Drive system ... 67
Figure 69: Multiple voltage E/E architectures ... 68
Figure 70: Displacement of high power loads ... 69
Figure 71: Weight reduction in wiring harnesses ... 70
Figure 72: Prodrive’s prototype silicon carbon based multiport DC-DC converter ... 70
Figure 73: The roles of differing battery technologies ... 71
Figure 74: Dual battery electrical architecture ... 72
Figure 75: Projected powertrain demand scenarios ... 72
Figure 76: Lithium-ion battery cell design advantages and disadvantages ... 73
Figure 77: Summary of relative battery and energy storage system performance ... 74
Figure 78: A ragone plot illustrating relative power and energy densities for various battery chemistries 74
Figure 79: ESOI for various energy storage mediums ... 75
Figure 80: Absorbent Glass Mat battery technology ... 76
Figure 81: Global lithium-ion battery materials production to 2020 ... 76
Figure 82: The lithium-ion cost reduction challenge ... 77
Figure 83: Vehicle electrification roadmap – systems, performance and opportunity ... 78
Figure 84: Ultracapacitor used to overcome temperature sensitivity to temperature of Li-ion battery pack ... 79
Figure 85: Ultracapacitor versus lithium-ion energy efficiency ... 79
Figure 86: Johnson Controls dual voltage battery system ... 81
Figure 87: Fuel economy improvement measures and costs ... 83
Figure 88: Fleet-average weight and fleet-average CO₂ emissions by carmaker 2011, compared with EU target line ... 85
Figure 89: Light vehicle hybrid production proportions ... 86
Figure 90: Three interlinked phases of change to current light duty powertrain technology and strategy ... 86
Figure 91: Overview of 48-volt key functions expressed in terms of vehicle speed and time ... 87
Figure 92: Electronic architecture and the changing roles of OEMs and suppliers ... 88
Figure 93: Vehicle development and electronic development become more aligned ... 89
Figure 94: The transformation of R&D into a functional organization ... 89
Figure 95: Hybrid architectures are split into several different types, with P2 (European) and Powersplit (US/Japan) dominant ... 91
Figure 96: Lower cost mild hybrid systems at 12- to 48-volt are cost effective for wider deployment ... 92
3.1.1 Fuel economy and CO₂ emissions

International CO₂ reduction commitments from Europe, the US and Asia, coupled with the promulgation of legislation have forced vehicle manufacturers to produce cost-efficient alternatives whilst driving markets toward increasing environmental consciousness. While the environmental problem is seen as global, the solutions are being managed in a variety of different ways within each of the vanguard triad jurisdictions. However, overall the global CO₂ target range is beginning to converge.

Figure 17: Comparison of global CO₂ regulations for passenger cars, in terms of NEDC gCO₂/km.

![Comparison of global CO₂ regulations for passenger cars, in terms of NEDC gCO₂/km.](image)

Source: ICCT

The movement to set fuel economy standards was launched by the US following the first OPEC oil shock of the early 1970s, although the Corporate Average Fuel Economy (CAFE) standards that were introduced in 1975 were increased gradually for a few years and then allowed to relax once the global oil price stabilised. However, since the end of the twentieth century, the EU and Japan have also developed fuel economy standards for the new light vehicle fleet.

The EU opted to use grams of CO₂ emissions per kilometre (g/km) as a unit of measure, Japan adopting kilometres per litre (km/l) of fuel and the US retaining miles per gallon (mpg) using the US gallon (3.7854 litres). China has also now set standards that are expressed in litres per 100km (l/100km).

3.1.2 The European Union

Following the development of the Kyoto Protocol in 1998, the European Automobile Manufacturers Association (ACEA) and the European Commission (EC) signed a commitment in order to help achieve the EU Community’s Kyoto goals. Its most highlighted feature was the agreement to reduce CO₂ emissions from
The stringency of the US and EU standards as well as the German proposal can be compared in another manner. From 2012 to 2025, the US standards aim to reduce car GHG emissions annually by 4.8%. The European Commission proposal targeted a 4% annual reduction. In contrast, the German proposal would amount to a 2.7% annual reduction in new vehicle CO₂ emissions.

The Chairman of the European Parliament Committee on the Environment, Matthias Groote, rejected Germany’s proposal, saying “A deal is a deal.” However, as the EU tries to reconcile its ambitions to fight climate change with efforts to help economic recovery, the German proposal gained significant support. It now seems unlikely that the industry will be allowed to use this route to curtail its risk of severe financial penalties, but as Germany bought forward these proposals and they appear to have failed to gain sufficient traction the motivations for a speedy introduction of 48-volt as a lower cost alternative to high voltage hybrids become yet more pronounced.

From a consumer perspective how much motivation is there for 48-volt, even if it is differentiated as a choice? This depends very much on cost and running costs, which necessarily depends on the dynamics of fuel pricing.

Figure 29: Additional costs entailed by tougher European CO₂ legislation for a vehicle with emissions of 161g/km

This is an area that regulation can also affect significantly and Europe has a long history of taxing consumers to promote fuel efficiency. With an aging vehicle fleet and increased annual mileage, the concept of an ‘emissions tax’ still hovers over the EU with up to as many as 11 member states introducing into their taxation systems, elements based on a vehicle’s CO₂ emissions and/or fuel consumption.
Based on work carried out by engineering consultancy FEV, the different stop-start systems listed above can be evaluated using a decision matrix (Figure 41) based on a spider diagram helps to understand the complex dependencies. The spider diagram is based on FEV’s experience from past and on-going projects.

Figure 41: Comparison between different stop-start systems

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Costs</th>
<th>Complexity/Package of Solution</th>
<th>Start Comfort</th>
<th>Fuel Consumption Benefit</th>
<th>Wear</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSG</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Enhanced starter</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Direct start</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ISG</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Source: FEV

The two most competitive stop-start systems in near future are the BSG and the enhanced starter combined with an enhanced alternator for regenerative braking. As indicated in Figure 41 it is evident that both systems have similar advantages such as ease of packaging, fuel consumption benefits and comparable costs.

Compared to these systems the ISG is a high-cost solution but it gives many more possibilities for hybrid functionality.

A further advantage of the BSG is the possible option of leaving out the conventional starter in small engine applications. Retaining the existing layout of the system and comparable additional costs for integrating the stop-start system, a belt-driven starter generator with ability to boost might be the solution.

The SpeedStart system manufactured by Controlled Power Technologies in the UK is a BSG with all the control and power electronics in a single housing. It is liquid cooled and uses a switched reluctance machine, which provides additional benefits over conventional permanent magnet electric motors. It is designed to be applicable at both 12-volt and 48-volt. Figure 42 shows the performance improvements achieved in moving to the higher voltage version.
Aeristech claims that it overcomes the thermal management issues that can restrict other electric boosting devices currently available on the market to only transient operation by using permanent magnet motor technology in place of the more usual switched reluctance type. This has been made cost-effective by developing a patented control and switching technology that enables the use of many cost-competitive components.

Aeristech’s 48-volt eSupercharger has already been demonstrated by MAHLE Powertrain UK in a D-segment appraisal vehicle using its downsized turbocharged 1.2 litre, 3-cylinder gasoline engine. The engine achieved 32.9 bar BMEP at 2000rpm (+10% over base), delivering 313Nm (231 lb-ft) and a maximum power output of 193kW (259hp)—an increase of 61% over the base engine.

At low speed (1250rpm), the eSupercharger achieved 28.6 bar brake mean effective pressure (BMEP); an increase of 43% over the baseline 20 bar BMEP in the Mahle engine (Figure 55).

Figure 55: Results from MAHLE tests Aeristech’s 48-volt electric supercharger

Analysis of the power curve shows that the turbocharger run up line was complete by 3000 rpm, resulting in poor low-speed driveability. The addition of the eSupercharger re-instated the low-speed torque. In other words, combining the eSupercharger and the turbo resulted in a continuous torque curve through the complete engine operating range.

“By replacing the smaller turbo in a two-stage turbocharging arrangement with the eSupercharger, MAHLE Powertrain UK was able to increase the size of the main turbocharger without concerns over driveability and transient response. The eSupercharger can not only help increase specific output but is also much easier to accommodate within the engine compartment than a second stage turbocharger because it has greater layout flexibility”, says Bryn Richards, Aeristech CEO.
The converter uses silicon carbide devices that could operate at a higher frequency than silicon components. It also results in lower switching losses and smaller magnetic components, enabling the converter to achieve an efficiency of 98.7%, a gravimetric power density of 10.5kW/kg and a volumetric power density of 20kW/litre.

Therefore, it is likely that series production of this kind of multiport device will quickly align with the introduction of dual 12-volt/48-volt architecture vehicles in around 2016 enhancing the efficiency of handling multiple voltages, multiple energy storage devices and much more effective energy recuperation.

Figure 74: Dual battery electrical architecture

![Dual battery electrical architecture](image)

Source: Valeo

Figure 75: Projected powertrain demand scenarios

![Projected powertrain demand scenarios](image)

Source: Johnson Controls
7.1.2 Chassis and auxiliary systems improvements through 48-volt

- Enhanced efficiency in steering systems leading to a wholesale move to EPAS;
- Enhanced active chassis systems allowing improved vehicle dynamics;
- Enhanced operation of electro-mechanical braking and emergency brake assist;
- Improved auxiliary efficiency including window lifters, seat heaters, HVAC, infotainment and navigation systems.

7.1.3 Energy recuperation systems

- Dual 12-volt/48-volt battery systems and/or incorporation of ultracapacitors;
- Dual wiring harness configuration but with little weight penalty;
- Move to lithium-ion technology as available;
- Enhanced energy recuperation from stop-start system, transmission, thermal energy recovery, brake and suspension regeneration systems.